Что такое искусственный бриллиант. Искусственный бриллиант, фианит, кристаллы сваровски

УО "БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ"

Кафедра технологии важнейших отраслей промышленности

Индивидуальное задание

на тему: Производство искусственных алмазов

Реферат. 3

Введение. 4

Глава 1. Природные алмазы.. 5

1.1 Углеродная природа алмаза. 5

1.2 Природные месторождения. 6

1.3 Цена бриллианта. 7

Глава 2. Развитие технологии производства алмазов. 9

2.1 Необходимость промышленного производства алмазов. 9

2.2 Этапы развития. 10

2.3 Метод температурного градиента. 11

2.4 Применение тиснумита. 13

2.5 Современные технологии. 15

2.6 Химическая обработка. 17

2.7 Радиационная обработка. 17

2.8 Термобарическая обработка. 18

2.9 Управляемый синтез. 18

2.10 Контроль происхождения алмазов. 20

Заключение. 22

Список использованных источников. 23


Ключевые слова: алмаз, бриллиант, тиснумит, огранка, кимберлит, графит, кристалл, примеси, синтез.

В данной работе приводится общая информация о свойствах и природе алмазов, их крупнейших местрождениях и способах добычи; о развитии технологии производства искусственных алмазов и их применения, а также о современных технологиях выращивания и обработки алмазов.


Введение

Алмаз - абсолютно незаменимый материал в самых разных областях человеческой деятельности, начиная от ювелирной и обрабатывающей промышленности и заканчивая электронной и космической. И все это - благодаря его уникальным свойствам: твердости и износостойкости, большой теплопроводности и оптической прозрачности, высокому показателю преломления и сильной дисперсии, химической и радиационной стойкости, а также возможности его легирования электрически и оптически активными примесями. Крупные и особо чистые природные алмазы - большая редкость, поэтому неудивительно, что успешные попытки их производства вызывают огромный интерес.

Алмазы применяются во многих отраслях промышленности как абразивный материал. Дороговизна натуральных алмазов вызывает необходимость производства синтетических камней в промышленных масштабах. Ежегодное производство их составляет несколько миллионов карат. И большая их часть применяется для технологических нужд.

Целью работы является изучение технологии производства и обработки синтетических алмазов. Для этого ставится задача осветить историю развития отрасли, рассмотреть основные технологические процессы производства и способы обработки искусственных алмазов, а также показать разнообразные сферы применения таких алмазов в промышленности и современных нанотехнологиях.


1.1 Углеродная природа алмаза

С давних пор алмаз считали чудодейственным камнем и могущественным талисманом. Полагали, что человек, носящий его, сохраняет память и веселое расположение духа, не знает болезней желудка, на него не действует яд, он храбр и верен.

Алмаз является самым твердым минералом (твердость 10 по минералогической шкале; плотность 3,5 г/см3) с высоким показателем преломления 2,417. Кроме того, алмаз – полупроводник. На воздухе алмаз сгорает при 850 oС с образованием СО2; в вакууме при температуре свыше 1500 oС переходит в графит. Свойства алмаза резко меняются в зависимости от наличия (тип I) или отсутствия (тип II) примеси азота. Для типа I характерно аномальное двупреломление, низкая фотопроводимость, отсутствие электропроводности, поглощение в инфракрасном (между 8-10 мкм) и ультрафиолетовом (от 3300 А) диапазонах, высокая теплопроводность. Безазотные алмазы (тип II) практически изотропны, с высокой фотопроводностью, не поглощают инфракрасное излучение и прозрачны в ультрафиолетовом (до 2200 А), обладают чрезвычайно высокой теплопроводностью. Рентгеновская дифракция выявляет в первом типе дополнительные линии, свидетельствующие о «дефектности» кристаллической структуры.

Трудно представить, что самый твердый из известных природных материалов является одной из полиморфных (отличающихся расположением атомов в кристаллической решетке) модификаций углерода, другая модификация которого - графит, мягкое вещество, использующееся в качестве смазки и грифелей для карандашей. В алмазе, имеющем кубическую структуру, каждый атом углерода окружен четырьмя такими же атомами, которые образуют правильную четырехгранную пирамиду. Графит же имеет слоистую структуру, в которой прочные связи между атомами углерода существуют только внутри слоя, где атомы образуют гексагональную сетку. Связь же между отдельными слоями очень слабая, поэтому они могут легко скользить относительно друг друга и остаются на бумаге в виде микрочешуек, когда мы пишем карандашом.

Зарождались и росли алмазы миллиарды лет назад на глубинах в 150-200 км под воздействием высоких температур и давлений. Условия для их роста, как правило, сохранялись в течение нескольких миллионов лет, а затем нарастающее давление выбрасывало их ближе к земной поверхности. После чего они либо оставались на месте (в «коренных» месторождениях), либо под действием ветра и воды извлекались из породы и накапливались во вторичных (россыпных) месторождениях. До середины XX века основная добыча алмазов приходилась на россыпные месторождения. Их гораздо легче было искать и разрабатывать. Однако эти месторождения, как правило, мелкие и быстро истощаются. После 1990 года более 75% мировой добычи алмазов стало приходиться на долю коренных месторождений, так называемых кимберлитовых трубок. Эти конусообразные, суживающиеся книзу залежи породы выступали своеобразным транспортером, доставляющим алмазы на поверхность земли. Площадь выхода кимберлитовых тел на поверхность различна. Самая крупная кимберлитовая трубка «Мвадуи» в Танзании имеет поперечник ~1-1,5 км. Глубина разработки трубок доходит до 1 км. Однако далеко не все кимберлитовые трубки являются алмазоносными. Рентабельны только те, в которых содержание алмазов составляет 0,5-5 каратов (0,1-1,0 грамма) на одну тонну породы. Подавляющая часть алмазов обычно имеет размер от долей миллиметра до 4-5 мм, и их масса меньше карата (0,2 грамма).

В настоящее время добыча минералов ведется в 26 странах мира, крупнейшими из которых являются Россия (Якутия и Урал), Ботсвана, ЮАР, Заир и Намибия. Ежегодно в мире добывается в среднем 100-110 млн. каратов (20 тонн). В последние годы Россия вышла на первое место по добыче природных алмазов и на второе по их суммарной стоимости. По данным Минфина, объем добычи алмазов в России в первом полугодии 2004 года составил 17,7 млн. карат при средней цене 51 доллар за карат (0,2 грамма). Экспорт необработанных природных алмазов с территории РФ за январь-сентябрь 2004 года составил 23,6 млн. каратов. Доля ювелирных алмазов составляет 20-25%. Основная масса (75-80%) добываемых камней - так называемые технические. Алмазы данной категории благодаря своим высоким абразивным качествам нашли широкое применение в обрабатывающей и бурильной промышленности. Самый большой ювелирный алмаз в мире - «Куллинан», массой 3106 карат (621,2 грамма), размером 5,5х10х6,5 см, был найден в 1905 году в Трансваале (ЮАР). Впоследствии из него было изготовлено 9 крупных бриллиантов (самый большой «Звезда Африки» - 530,2 карата) и 96 мелких. В процессе огранки было потеряно 66% исходной массы кристалла.

Бриллианты (ограненные алмазы) оцениваются по четырем главным CCCC критериям (так называемая система 4’C): цвет (color), качество (clarity), огранка и пропорции (cut), вес в каратах (carat weight). Наиболее ценны те, что имеют так называемый «высокий» цвет, а в действительности являются бесцветными. Наличие даже едва заметного и незначительного, на взгляд неспециалиста, оттенка желтого, коричневого или зеленого цвета (называемого ювелирами «нацветом») может серьезно понизить стоимость камня. У бесцветных алмазов выше всего ценится круглая огранка (бриллиант в этом случае имеет 57 граней), позволяющая максимально выявить блеск и игру камня (так называемый «огонь»). Максимальная стоимость бриллианта весом 1 карат сегодня составляет $18 000. Наиболее часто камни такого же веса имеют менее высокий цвет и качество, и их стоимость - $5 000- $8 000.

Рисунок 1.1. Цветные бриллианты

Чемпионами по стоимости в мире бриллиантов являются окрашенные в красный, голубой, розовый, зеленый и оранжевый цвета камни. Цена на розовые и голубые бриллианты может превосходить стоимость бесцветных аналогичного веса и качества в 10 и более раз, а самым дорогим (за карат) за всю историю бриллиантом является камень красного цвета весом 0,95 карата, проданный в 1987 году на аукционе Christie’s за 880 000 долларов США. Единого прейскуранта для цветных камней не существует, и, как правило, они формируются на аукционных торгах.


Высокая цена на эти камни объясняется не только их особыми характеристиками, но и уровнем монополизации в торговле: Международная корпорация «Де Бирс», контролирующая 70-80% поставляемых на рынок природных алмазов, уже более столетия удерживает на них известные цены. Освоение во второй половине XX века промышленного производства технических и ювелирных аналогов не снизило стоимость алмазов на мировом рынке.

В промышленном количестве выращивают только мелкие камни диаметром до 0,6 мм, используемые в качестве сырья для изготовления абразивного инструмента. Цены на них незначительно упали после освоения данной технологии и составляют около 10 центов за карат. Снижение цен на ювелирные алмазы не предвидится, поскольку их выращивание обходится довольно дорого.

Бояться пришествия искусственных алмазов стоит не группе De Beers, а компании Intel

Метод Gemesis Высокое давление, высокие температуры. Кристалл вырастает в камере, имитирующей условия земной коры.

Метод Apollo Химическое осаждение паров. Кристалл получается, когда из облака плазмы идет дождь, который попадает на алмазную подложку.

Искусственные микроалмазы для промышленного применения.

Современная сенсация — синтетические ювелирные алмазы

Аарон Вейнгаартен смотрит на желтый алмаз сквозь ювелирную лупу. Мы в Антверпене, в гостиной Вейнгаартена, полной мрамора и позолоты, на самом краю района ювелиров, в самом центре алмазной вселенной. Почти 80% всех алмазов и бриллиантов в мире проходят через руки бельгийских торговцев камнями вроде Вейнгаартена, который носит окладистую бороду и черный костюм ортодоксального еврея. «Камень очень редкий, — бормочет себе под нос ювелир, — желтые алмазы такого оттенка найти очень непросто. Этот стоит 10, может, 15 тысяч долларов». Я сообщаю ему, что в кармане у меня два точно таких же. Он кладет камень на стол и в первый раз смотрит на меня серьезно. Я выкладываю еще два камня. Все они одного цвета и размера. Вероятность найти три одинаковых желтых алмаза примерно такая же, как бросить монету 10 тысяч раз и ни разу не увидеть орла. «Это что, кубическая окись циркония (в России этот камень больше известен под названием «фианит»)?» — не особенно надеясь на положительный ответ, спрашивает Вейнгаартен. Я отвечаю, что все алмазы — настоящие, их изготовила машина, находящаяся во Флориде. Общая стоимость производства не превысила сотни долларов. Ювелир ерзает на стуле, неотрывно следя за камнями, которые лежат на столе в его гостиной. «Если их нельзя отличить, индустрии придет конец», — резюмирует он.

При температуре 1200оС под давлением примерно 50 тыс. атмосфер углерод кристаллизуется в самый твердый из известных материалов. Именно так сформировались алмазы глубоко в земной коре 3,3 млрд. лет назад. Воссоздать такие условия в лаборатории непросто, но попыток предпринималось немало. Начиная с середины XIX века десятки «алхимиков» пострадали в результате несчастных случаев, происшедших при попытках изготовить алмазы. Последние десятилетия принесли успех, пускай скромный. Начиная с 1950-х инженеры научились вырабатывать мелкие кристаллы для промышленного применения — покрытия пил, буровых коронок и шлифовальных кругов. Но летом 2003 года на рынок попала первая волна искусственных алмазов ювелирного качества. Делать их научились две компании — Gemesis во Флориде и Apollo Diamond в Бостоне.

Неожиданный выход на рынок искусственных камней грозит необратимо трансформировать алмазную индустрию, ежегодный оборот которой оценивается в $7 млрд. Но важнее другое — массовое производство алмазов открывает двери разработке алмазных полупроводников. Оказывается, алмаз — не только самый твердый камень на земле, он также обладает самой высокой теплопроводностью. Сегодняшние полупроводники греются примерно до 100оС, а при дальнейшем нагревании просто перестают работать. Алмазные микросхемы, напротив, можно греть до температур, когда обычный кремний уже давно бы расплавился.

Бригадный генерал

Международный концерн De Beers уже 115 лет как монополизировал алмазный бизнес, уничтожая конкурентов путем регулирования предложения алмазов на рынке. За свою долгую историю De Beers пережила многочисленные африканские восстания, боролась с американским антимонопольным законодательством, уклонялась от обвинений в эксплуатации несчастных рабочих третьего мира. Не сломило ее монополию и открытие многочисленных алмазных месторождений в Австралии, Канаде и Сибири. У компании громадный рекламный бюджет и полный Контроль над каналами распространения камней. Но чего у De Beers нет — так это отставного бригадного генерала Картера Кларка.

Картеру Кларку 75 лет. Он ушел в отставку более 30 лет назад, но командных навыков так и не утратил. Когда генерал появляется в офисе компании Gemesis, которую он основал в 1996 году с целью наладить массовое производство алмазов, сотрудники встают в приветствии. Иначе нельзя. Особенно учитывая, что «Генерал», как его тут прозвали, постоянно отдает своим подчиненным честь, как будто они — его армия, которая идет в бой. «Я был в Корее и Вьетнаме», — сообщает Генерал, отдав мне честь в приемной. — Так что уж поверьте, справлюсь и с алмазным бизнесом". Кларк показывает мне свою новую фабрику, расположенную в промышленной зоне недалеко от города Сарасота (Флорида). В здании планируется разместить машины для производства алмазов, которые похожи на медицинские приборы поддержания жизни. В строю 27 таких машин. Компания Gemesis надеется вводить в строй по 8 штук ежемесячно. В этом ангаре их число должно достичь 250-ти. Другими словами, Gemesis готовит первый удар по алмазному бизнесу.

Кларк не собирался становиться алмазным королем. Идея пришла случайно, во время его поездки в Москву в 1995 году. Его тогдашняя компания — Security Tag Systems — была одной из первых, кто привез в Россию метки, мешавшие воровать вещи из магазинов. Так он познакомился с Юрием Семеновым, который руководил одним из научно-технических бюро, по государственной программе занимавшихся продажей военных технологий советских времен западным инвесторам. Но у Семенова была идея получше — он предложил Генералу выращивать алмазы. Через несколько часов у Кларка на столе лежал проект двухтонного агрегата, который при помощи гидравлики и электричества фокусировал все возрастающие объемы тепла и давления в центре сферы. Генералу сообщили, что прибор воссоздает условия, существующие на глубине 150 км под землей, где и формируются алмазы. Поместите осколок алмаза в земную кору, добавьте углерода, и алмаз станет расти. В 1954 году компания General Electric именно так и поступила, прессом в 400 тонн выдавив душу из углерода. Устройство General Electric позволяло вырабатывать недорогую алмазную пыль для промышленного применения, а в начале 1970-х компания научилась делать алмазы весом целых 2 карата. Но для этого требовалось столько усилий и электроэнергии, что получалось дороже, чем купить настоящий алмаз из шахты. Русские утверждали, что их конструкция недорога, потребляет не больше энергии, чем несколько ламп накаливания, и будет выдавать по трехкаратному камню раз в несколько дней. И что Генерал сможет получить такую машину всего за $57 тыс.

Три месяца спустя, зимой, Кларк вернулся в Москву. Его встретили телохранители и отвезли на склад под Москвой. В холодном, неотапливаемом помещении он наблюдал, как Николай Полушин — один из сибирских ученых, придумавших устройство — поднял верхнюю половинку сферы, достал небольшой керамический куб, ударил по нему молотком и передал Кларку небольшой алмаз. Все улыбались. В конце концов Генерал заказал три машины и попросил Семенова отправить их во Флориду.

Русские машины

Но существовали и две проблемы. Во‑первых, никто в США не умел работать с такими машинами. Эту проблему Кларк решил, переселив команду русских во Флориду. Во‑вторых, русские и сами-то не слишком хорошо овладели процессом. Работу машины пока нельзя было назвать надежной. Генералу и его новой компании Gemesis срочно была нужна помощь. Он обратился к иранцу по имени Реза Аббашайн, эксперту в области кристаллов, который возглавлял кафедру материаловедения в университете штата Флорида. Аббашайн согласился доработать машину. При помощи своих студентов он выкинул всю русскую автоматику и установил компьютерные системы. Коллектив заменил блок питания и методично отслеживал малейшие нюансы работы машины. Учитывая, что приходилось одновременно контролировать более 200 параметров, работа была нелегкой.

К 1999 году усилиями Аббашайна у Генерала были очень высококачественные камни. И Кларк полетел в Лондон, чтобы показать их группе потенциальных инвесторов. Вместо того чтобы просто высыпать груду алмазов перед ними на стол, он отправился к ювелиру в Хаттон Гарден, алмазный район британской столицы, и попросил, чтобы его камни оправили в кольца. Ювелир согласился, и Кларк вернулся в свой отель. Зазвонил телефон. На проводе была компания De Beers. По словам Кларка, чиновника из De Beers Джеймса Эванса Ломби предупредили о синтетических камнях менее чем через два часа после их прибытия к ювелиру. Ломби попросил о встрече с Генералом и приехал прямо в гостиницу, где и состоялась их беседа за чаем под звуки пианино и скрипичного дуэта.

Представители компании De Beers отказываются говорить об этой встрече — да и обо всем остальном, касающемся этой истории — но Кларк рассказывает, что просто выложил свои козыри. «Когда я сообщил, что собираюсь открыть фабрику по массовому производству таких камней, чиновник побелел. В De Beers знали о существовании технологии, но надеялись, что она так и останется в России и никто не сможет довести ее до ума. К концу разговора его руки тряслись», — вспоминает Кларк.

Но De Beers не сдавалась. В течение 2000 года картель запустил «Программу защиты камней», цель которой — информировать покупателей алмазов о том, что на рынке появились искусственные камни, и стал поставлять свои проверочные машины (модели DiamondSure и DiamondView) в крупнейшие в мире ювелирные лаборатории. Раньше такие лаборатории анализировали и сертифицировали цвет, прозрачность и размер камней. Теперь их просят также отличать рукодельные камни от ископаемых. Прибор DiamondSure просвечивает камень и анализирует показатель преломления. Если камень кажется подозрительным, его проверяют на приборе DiamondView, который выясняет внутреннюю структуру алмаза. Еще в 1996 году ученые De Beers писали, что идеально было бы иметь простой прибор, который смог бы отличать искусственные алмазы от натуральных. Но, к сожалению, в ближайшее время такой прибор создать не удастся, поскольку синтетические алмазы — все равно алмазы, как химически, так и физически.

Синтетика

Летом 2001 года Аббашайн сообщил Генералу, что готов, наконец, к массовой выработке алмазов. Оставалось принять одно, последнее решение. Каждая машина могла вырабатывать по одному желтому камню весом три карата каждые три дня (бесцветные камни вырабатываются дольше). Учитывая их редкость, удельная цена карата желтых алмазов настолько выше, что позволить себе такие камни могут только очень богатые люди. К тому же за последние годы цветные алмазы вошли в моду (в обручальном кольце у Дженнифер Лопез, например, был розовый алмаз). Кларк решил, что вызовет наибольший шум, принеся желтые камни на рынок американского «среднего класса». Он собирался конкурировать как по цене (продавая свои камни на 10%-50% дешевле), так и по стилю. И, в случае победы на рынке желтых камней, перейти на рынок бесцветных. Но алмазная индустрия нанесла ответный удар. В начале 2002 года De Beers начала поставки улучшенных моделей DiamondSure. Тем временем лоббисты добились требования Федеральной торговой комиссии США, чтобы Gemesis маркировала свои камни как синтетические.

Gemesis строит свой маркетинг на утверждении, что синтетические камни лучше натуральных. Генерал предлагает называть свои алмазы «культивированными». Это намеренная отсылка к бешено популярному (и гораздо более ценному, чем натуральный) искусственному жемчугу.

«Если вы предложите женщине выбрать между 2-каратным и 1-каратным алмазом, что она, по‑вашему, выберет при прочих равных? — вопрошает Генерал. — Важно ли ей, какие из них натуральные? Будут ли к ней подходить с вопросами о натуральности камней в ее украшениях?» «Да ни за что!» — отвечает он сам себе. С ним не согласен Джеф Ван Ройен, который представляет Высший алмазный совет Бельгии: «Если люди по‑настоящему любят друг друга, они дарят настоящие камни. Не может быть символом вечной любви нечто, созданное на прошлой неделе».

Это и есть официальная линия De Beers. Ван Ройену не нравится аналогия с искусственным жемчугом, скорее уж речь может идти о синтетических изумрудах, которые появились в огромных количествах в середине 1970-х. Вначале цена была очень высокой, но ювелирные лаборатории быстро поняли, что отличить синтетику можно с помощью обычного микроскопа. Цена упала, и теперь они стоят не более 3% от натуральных.

Новая угроза

Ван Ройен рассказал мне и о другой угрозе. Ходят слухи о новой методике выращивания алмазов ювелирного качества. Процесс представляет собой химическое осаждение паров (chemical vapor deposition — CVD) и уже более десятилетия используется для покрытия больших поверхностей микроскопическими кристаллами алмазов. Эта технология основана на превращении углерода в плазму, которая затем осаждается на подложку в виде алмазов. Ранее существовала только одна проблема — никто не мог научиться выращивать таким образом цельный алмаз. «По крайней мере, до сих пор было так», — добавляет Ван Ройен. Компания Apollo Diamond, темная лошадка из Бостона, по слухам, научилась. Если это правда — индустрии и правда грозит крах, так как алмазы, созданные по технологии CVD, можно выращивать огромными брикетами, а после резки и полировки они будут неотличимы от натуральных камней. «Но таких алмазов никто в Антверпене не видел, так что мы даже не знаем, существуют ли они на самом деле», — говорит Ван Ройен. Тогда я достаю из кармана коробочку от 35-мм фотопленки и кладу ее на стол. Внутри, на подушечках, лежат два маленьких алмаза. «Поверьте мне, они существуют», — сообщаю я ученому.

Темная лошадка

За три дня до поездки в Бельгию я слетал в Бостон и встретился с Бриантом Линаресом, президентом компании Apollo Diamond. После 45-ми-нутной беседы в машине он, видимо, решил, что со мной все в порядке и я не шпион De Beers. Мы вошли в помещение, и я увидел человека, с головы до ног одетого в герметичный костюм, хорошо известный благодаря рекламе Intel. «Добро пожаловать в компанию Apollo Diamond», — подтолкнул меня Линарес и быстро закрыл дверь. Он выдал мне герметичный костюм, в том числе бутсы, очки и шапочку для волос. В комнате были трое в похожей одежде. Они стояли вокруг цилиндрического аппарата, похожего на промышленный кофейник, оборудованного засовом на иллюминаторе. Из окошка светило сверхъестественным зеленым. Я заглянул через стекло. Там, за мерцающим зеленым облаком, росли четыре алмаза. «К этому я шел очень долго», — рассказал мне один из людей, стоявших возле машины. Это Роберт Линарес, отец Брианта. В 1980-х он был известным исследователем в области сложных полупроводников. Его компания, Spectrum Technology, известна благодаря вводу в производство технологии использования пластин арсенида галлия в качестве полупроводниковой подложки, заменившей кремний и позволившей сотовым телефонам стать меньше и использовать большую полосу частот. Линарес-старший продал свою компанию корпорации PacifiCorp и в 1985 году исчез из мира полупроводников. Оказывается, на свои деньги он построил секретную лабораторию для исследования алмазов. «Я понимал, что рано или поздно алмазы станут совершенными полупроводниками, хоть никто в это и не верил. После продажи компании я мог делать что хотел, и я потратил 15 лет на собственные исследования», — рассказал Линарес.

Чтобы вырастить монокристалл алмаза методом CVD, сначала нужно угадать точное сочетание температуры, плотности газа и давления, «ту самую точку», в которой начинается создание единого кристалла. В противном случае на вас прольется дождь из несчетного количества мелких алмазов. Найти «ту самую точку» примерно так же непросто, как найти конкретную песчинку на берегу. Из миллионов комбинаций подходит только одна. И в 1996 году Линарес ее нашел. А в июне 2003 года он, наконец, получил патент на свой процесс и уже вырабатывает безупречные алмазы, планируя вскоре начать продажу камней на ювелирном рынке. Но это — только первый шаг. На деньги от продажи камней Роберт и Бриант Линаресы рассчитывают заняться разработкой алмазных полупроводников. Неудивительно, что алмазная индустрия не в восторге от их планов, в чем убедился Линарес-младший пять лет назад, посетив конференцию в Праге. Во время перерыва к Линаресу подошел человек и посоветовал быть осторожнее. «Он сказал, что исследования моего отца — верный путь получить пулю в голову», — вспоминает Линарес.

Пять долларов за карат

Алмазная индустрия, вообще-то, гораздо больше боится камней, созданных по технологии CVD, чем камней от Gemesis, хоть последняя и представляет непосредственную угрозу. По идее, метод CVD даст чрезвычайно чистый кристалл. Алмазы от Gemesis растут в металлическом расплаве, и небольшие частички металлов попадают в решетку алмаза при его росте. Алмазы CVD, напротив, осаждаются, образуя почти стопроцентно чистый кристалл, и поэтому неотличимы от натуральных. Но наибольший потенциал технологии CVD лежит в использовании их в компьютерах. Если алмаз станет применим в полупроводниках, потребуется метод недорогого выращивания камней в больших пластинах. (Кремниевые пластины, которые использует Intel, например, имеют диаметр около 30 см). А размер CVD ограничен только размером зерна, которое заложат в машину. Процесс начинается с квадратной пластины. Камень растет в форме призмы, где верхняя часть слегка шире основания. За годы, прошедшие с момента обнаружения «той самой точки», компания Apollo училась выращивать алмазы все большего размера, отрезая верхушку от одного и используя ее как базу для другого алмаза. На сегодня компания способна вырабатывать 10-мм пластины, но за 5 лет планирует достичь 10 см. Карат стоит около $5.

Но вернемся в Высший алмазный совет. Я вытряхиваю камни от Apollo на стол. Ван Ройен неуверенно поднимает один из них длинным пинцетом и кладет под микроскоп. «Невероятно! Можно рассмотреть?» — спрашивает он. Я соглашаюсь оставить ему камни на ночь. Утром Ван Ройен выглядит уставшим. Он признает, что почти всю ночь изучал камни. «Думаю, что отличить их все же смогу: они слишком идеальны для натуральных алмазов. В природе все имеет изъяны. А у этого камня их практически нет», — резюмирует ученый. И добавляет на прощание: «В ваших руках нечто, чего нет больше ни у кого в Антверпене. Если хотите понять, насколько на самом деле важны эти камни, поговорите с Джимом Батлером из ВМФ США».

Алмазный Pentium

Джим Батлер возглавляет группу при ВМФ, которая занимается исследованием алмазов. Батлер изучал процесс CVD на протяжении 16 лет и повидал немало разочарований за этот срок. Но сегодня он — оптимист. Существовали три проблемы на пути к алмазному процессору. И похоже, все три готовы пасть. Во‑первых, алмазы считаются бешено дорогими из-за политики De Beers, которая не отпускает цены на рынке. Синтетические алмазы решат эту проблему. Во‑вторых, не было надежного источника больших и чистых камней. На ископаемые алмазы рассчитывать нельзя, так как невозможно обеспечить одинаковые электрические характеристики камней. Алмазы от Apollo решают и эту задачу. В-третьих, была проблема, над которой ломали головы материаловеды всего мира. Чтобы сделать микросхему, нужны полупроводники p- и n-типа. Алмаз — естественный изолятор, он не проводит электрический ток. Gemesis и Apollo смогли ввести в кристаллическую решетку алмаза бор, который создает нужный тип проводимости p-типа. Но до сих пор никто не смог создать в алмазе проводимость n-типа. При встрече со мной в Вашингтоне Батлер едва мог сдержать ликование. Он сообщил мне, что совершен прорыв — в июне 2003 года, совместно с учеными из Израиля и Франции, Батлер объявил о том, что найден способ инвертировать природную проводимость бора и создавать легированные бором алмазы n-типа. «Таким образом, мы получили p-n-пару. Другими словами, работающий полупроводник. На горизонте уже алмазный Pentium!» — радуется Батлер.

Однако ученого огорчают настроения в компьютерной индустрии США. Если не поторопиться, считает он, японцы и европейцы вырвутся вперед. И действительно, в разговорах с главными шишками компании Intel выяснилось, что они даже не знали о последних достижениях в области алмазных полупроводников. Кришнамурти Сумианат, один из боссов компании Intel, говорит, что освоение нового материала занимает около 10 лет, а в кремний вложено столько, что отказываться от него компания пока не намерена.

Но в один прекрасный день выхода у изготовителей микросхем не останется. Бернард Вунеш, профессор материаловедения в Массачусетсском технологическом институте, прямо говорит: «Если закон Мура не падет, микросхемы будут становиться все горячее и горячее. И кремний в какой-то момент просто потечет. Алмаз — вот решение проблемы».

Доброго времени суток, дорогие друзья! Что общего между алмазом и графитовым стержнем простого карандаша? Все верно, оба они состоят из атомов углерода. Однако, графит мягкий, а алмаз несокрушим, как настоящий «адамант» (10 баллов по шкале Мооса). Как это может быть? И каким образом на свет рождаются искусственные алмазы?

Действительно, оба минерала состоят из одинаковых атомов , но их структура совершенно разная. У алмаза каждый атом углерода находится в центре треугольной пирамиды – тетраэдра. Такая кристаллическая решетка очень плотная, связи в ней сильные.

Структура графита подобна стопке монет: листы его кристаллической решетки, состоящие из шестиугольников атомов углерода, лежат слоями. Связь между слоями слабая, они легко сдвигаются. Поэтому твердость графита минимальна (1 балл по шкале Мооса).

Существует ли способ превратить невзрачный графит в сверкающий адамант? Удивительно, но такая технология существует.

Когда копия не хуже оригинала: искусственные алмазы

Синтетический алмаз – это копия, созданная нами «по образу и подобию» оригинала – природного камня. У нее точно такая же структура, свойства и другие параметры.

Однако, синтетическая копия нисколько не уступает оригиналу. Судите сами: синтетические, а вернее сказать, синтезированные алмазы превосходят натуральные по твердости и чистоте, лучше поддаются огранке.

Искусственные камни радуют полным отсутствием дефектов своих настоящих «собратьев» (микротрещины, вкрапления, помутнения). При этом они значительно дешевле драгоценных алмазов.

Впервые успешное создание адаманта было осуществленов 1950 г. учеными компании ASEA (Швеция).

В 1956 г. американская фирма «General Electric» получила наипервейший алмаз, положивший начало потоковому фирменному производству искусственных камней. Это событие повергло рынок драгоценных камней в состояние шока.


За пару лет до этого, без особой шумихи, была запатентована другая технология выращивания алмазных кристаллов. Сначала их ювелирное качество вызывало сомнения, но в конце 80-х годов, с развитием новым технологий, процесс роста был усовершенствован и обрел новую жизнь.

Стало возможным, меняя режим синтеза, выращивать камни самых разных цветов: красные, голубые, желтые, коричневые. Такая фантазийная окраска в природе встречается очень редко: всего несколько десятков на миллион белых камней.

Исторический факт: император Павел I заплатил за красный бриллиант небольшого размера 100 тысяч рублей. В то время корову можно было купить за 5 рублей.

На мировом рынке первые синтезированные камни появились в 1993 г. С этого времени они широко используются в ювелирном деле, науке, технике и медицине.

Выпускаются синтетические кристаллы нескольких категорий:

  • обычной прочности
  • повышенной прочности
  • высокой прочности
  • монокристалли­ческие.

За год мировая добыча природных алмазов составляет 26 тонн. За тот же период (по данным Diamond Trading Company) только в производство драгоценных камней и украшений поступает до 200 тонн их синтетических алмазов!


Где используют синтетические алмазы

Искусственные адаманты используют в ювелирном деле. Потребители относятся к выращенным алмазам позитивно, в особенности современная молодежь. Поколению HiTec нравится этот высокотехнологичный продукт, идентичный по свойствам природному камню. При этом цена такого бриллианта вдвое ниже.

Ювелирные камни синтетического производства – по-настоящему прибыльный бизнес. Но вряд ли синтетика заменит природные адаманты в ювелирной отрасли. Сегодня не так много компаний, которые производят бесцветные монокристаллы. Да и скорости роста таких кристаллов довольно малы – около 1-2 мг/час. Таким образом, на выращивание кристалла в 1 карат (200 мг) уйдет около 5 суток.

Главное предназначение синтетических кристаллов связано с промышленным использованием. По словам Александра Колядина, технического директора российского алмазного холдинга: «Если из алмаза уже ничего больше нельзя изготовить, сделай бриллиант».


Действительно, высококачественные синтетические камни чрезвычайно востребованы в промышленности.

  • Их безупречные кристаллы используются в специальной оптике, микроэлектронике, изготовлении синхротронов.
  • Синтетические алмазы применяются для производства сверхмощных лазеров для медицины и оборонной промышленности.
  • Выращенные кристаллы идеально подходят для компьютерных технологий, так как выдерживают более высокие температуры, чем кремниевые чипы. Это увеличивает долговечность и надежность электроники.
  • Синтетические алмазы широко используются в виде алмазного порошка в машиностроении, металлургии, оборонном комплексе.
  • Алмазные пасты из синтетических кристаллов применяются при изготовлении особо точных деталей, к чистоте поверхности которых предъявляются особые требования.
  • Почти все высококачественные шлифовальные и режущие инструменты созданы с применением синтезированных алмазных кристаллов.
  • Медицинские инструменты – еще одна важная сфера применения. Например, алмазный скальпель превосходит металлический по прочности. Его лезвие идеально ровное. Это особенно важно в офтальмологии, где необходимо свести к минимуму травмирование глаза при операции. Швы после такого скальпеля заживают очень быстро.
  • Алмазные хрусталики имеют наиболее высокий коэффициент преломления и биосовместимость, поэтому они становятся все более популярными.


Неудивительно, что производство алмазов для промышленных целей идет вперед семимильными шагами. Сегодня оно превышает 5 миллионов карат. Лидируют в выращивании промышленных кристаллов Китай, США, Япония, Россия, Ирландия, ЮАР.

Как делают алмазы

В природных условиях алмазы образуются в земной мантии, при температуре 1300°С, под давлением 50000 атмосфер. Когда подземный вулкан делает мощный «выдох», раскаленные газообразные вещества мантии прорываются наружу, вынося на поверхность драгоценные камни. Так образуется легендарная кимберлитовая трубка Южной Африки – длинный колодец, уходящий на глубину до 150 км.

Как полагают геологи, эра формирования крупных алмазов завершилась. Земная мантия больше не является источником драгоценных кристаллов.

Возможно, в эпоху своей геологической молодости наша планета была более горячей, чем сегодня.

Если «материнской утробой» природных алмазов является мантия Земли, то их синтетические «сводные братья» вправе считать таковой лабораторию. Сегодня существует две основные промышленные технологии потокового производства синтетических адамантов: HPHT и CDV.

  1. Первая основана на синтезе кристаллов из расплавленного углерода при самом высоком давлении и участии металлов-катализаторов. Это термобарический способ: high-pressure high-temperature (HPHT).
  2. При использовании второй технологии адамант осаждают в виде пленочки из углерода в виде газа, а значит из плазмы, для создания которой необходима электрическая дуга. Это метод химического осаждения из газовой фазы: chemical vapor deposition (CDV).

Выращивание алмазов – дело кропотливое. Так, при HPHT-технологии в особые тубусы помещают порошок графита, сплавы металлов-катализаторов (железо, кобальт, никель), затравки-зародыши (алмазные кристаллы небольших размеров). В течение 12-13 суток с помощью гидравлического пресса поддерживается давление 50−70 тыс. атмосфер. При температуре 1500°С жидкий металл растворяет графитный порошок. Полученная масса устремляется к «зародышам», инициируя рост искусственных кристаллов.

При CVD-методе выращивания лабораторных кристаллов специальная пластина «засевается» алмазными «зародышами». Затем пластину помещают в специальную камеру. В условиях высокого вакуума, при температуре 3100°С молекулы углерода осаждаются из углеводородного газа (метана), формируя на пластине алмазы. Эта технология более энергоемкая и требует газообразного углеродного сырья. Но это с лихвой окупается скоростью производства.

Как отличить выращенные камни от природных?

На самом деле, задача непростая. Не каждый ювелир сможет отличить синтетический алмаз от естественного. Однако у потребителя все же есть шансы избежать покупки синтетического украшения по цене природного.

Разумеется, исследования подобного рода требуют специального оборудования, которым располагают лишь самые известные геммологические лаборатории. Их экспертное заключение (сертификат) может дать 100%-ную гарантию природного происхождения продаваемого бриллианта.

По мнению специалистов компании «De Beers», мирового алмазного монополиста, достоверному распознаванию подлежат абсолютно все синтетические алмазы и бриллианты.

Приборы для идентификации

Компания «De Beers» первой разработала специальные приборы для идентификации кристаллов: «DiamondSure» и «DiamondView».


Прибор «DiamondSure» позволяет проводить проверку камней методом абсорбционного анализа, выявляя изменения поглощения света за счет микроэлементных включений.

В ходе такого анализа 98% природных кристаллов проходят проверку. Остальные 2% природных алмазов, все синтетические бриллианты и камни-имитаторы направляются на дальнейшее тестирование на приборе «DiamondView».

Работа этого прибора основана на методе флюоресценции. Он сочетает в себе источник ультрафиолетового излучения и электронный микроскоп.

Генерируя флюоресценцию исследуемых камней, прибор позволяет увидеть очертания секторов роста в синтетических бриллиантах. При этом, возможна диагностика бриллиантов как ординарных, так и фантазийных цветов.

Не отстает от «De Beers» и Геммологический институт Америки (GIA). Он создал прибор «DiamondCheck», принцип работы которого основан на инфракрасной спектроскопии. Прибор позволяет дилерам алмазных бирж проводить экспресс-проверку камней: время тестирования составляет всего 10 секунд.

Приборами «DiamondCheck» оснащены Клуб алмазных дилеров (Нью-Йорк), самые крупные алмазные биржи Южной Африки, Израиля, Гонконга, Дубая, Шанхая, Токио, а также Индийская алмазная биржа.

Алмазная лаборатория «HRD Antwerp» в Антверпене тоже внесла свою лепту в распознавание природных и выращенных алмазов. Ее последняя новинка — прибор «M-Screen», позволяющий обнаруживать синтетические камни в несколько раз быстрее, чем DiamondCheck от GIA.

Дорогие друзья! Заканчивая разговор об алмазах, уместно вспомнить известную строчку песни Мэрилин Монро о «лучших друзьях девушки» – бриллиантах.

Команда ЛюбиКамни

Технология производства синтетических алмазов

Развитие исследований по сочанию аппаратов высокого давления, необходимых для синтеза алмазов, связано с именем пионера исследований в области высоких давлений профессора Гарвардского университета П.У. Бриджмена. Бриджмен быстро понял, что одно только высокое давление не способно превратить графит в алмаз. Согласно теории, алмаз представляет собой стабильную кристаллическую форму углерода уже при давлениях примерно 20 000 атм, но при давлениях в 425 000 атм при комнатной температуре и 70 000 атм при температуре красного каления превращения графита в алмаз не происходило. В то же время алмаз при нормальном атмосферном давлении ведет себя как вполне стабильная фаза.

Превращение алмаза в графит может быть осуществлено при нагреве примерно до 1500 o С, и это позволило предположить, что для обратного превращения при высоких давлениях необходимы температуры того же порядка. Человеком, которому посчастливилось первому осуществить синтез алмаза, был Трейси Холл.

Холл пришел в лабораторию "Дженерал электрик" в 1948 г. и с 1951 г. стал членом небольшой исследовательской группы, занимающейся "Проектом сверхдавления", как были закодированы работы по синтезу алмаза. Хотя Холл был химиком, он понял, что главное препятствие на пути успешного решения проблемы синтеза алмаза - отсутствие оборудования высокого давления, и разработал эскизный проект системы, впоследствии названной "халфбелт". Это был только первый шаг к успеху, но он наметил путь к новой, ставшей знаменитой конструкции "белт" .

16 декабря 1954 г. пришел первый успех. Холл позднее писал: "Руки мои тряслись, учащенно билось сердце, я ощутил слабость в коленях и вынужден был сесть. Мои глаза поймали сверкнувший свет от дюжин мелких треугольных граней октаэдрических кристаллов... и я понял, что наконец-то алмазы сделаны человеком". Этот эксперимент был выполнен при давлении 70 000 атм и температуре 1600 o С с использованием графита и троилита (FeS). Алмазы прилипли к танталовому диску, который используется для подводки электрического тока при нагреве образца.

Тантал, кроме того, восстанавливал FeS до металлического железа, так как присутствие одной серы не может вызвать превращения графита в алмаз. Катализатор играет роль растворителя, в котором графит сначала растворяется, а затем кристаллизуется в виде алмаза. Без металлического растворителя скорость превращения графита в алмаз очень мала, даже если температура и давление достаточны.

Аппарат для синтеза алмаза, предложенный Холлом, назывался "белт" (пояс), потому что центральная часть, где происходит синтез алмазов, поддерживалась кольцом из карбида вольфрама с бандажом из высокопрочной стали. Два конических поршня приводились в движение с помощью большого гидравлического пресса из упрочненной стали. Полученные синтетические алмазы были техническими.

Главная трудность при создании аппаратов высоких давлений и температур заключается в том, что стали и другие конструкционные материалы быстро теряют свою прочность при нагреве. Эту проблему можно решить путем нагрева только внутреннего рабочего объема и соответствующей термоизоляции для предотвращения чрезмерного нагрева поршней и пояса.

Согласно патенту "Дженерал электрик", типичная шихта в реакционной камере представляет собой смесь 5 частей графита, 1 части железа, 1/3 части марганца и 1/3 части пятиокиси ванадия. Эту смесь запечатывали и нагревали до 1700 o С под давлением 95 000 атм в течение 2 мин, затем охлаждали до 1500 o С за 8 мин. Сейчас в качестве растворителя чаще всего используют смесь никеля и железа, позволяющую осуществить синтез алмаза при менее жестких условиях, например при 50 000 атм и 1400 o С. Также доказано, что графит как источник углерода может быть заменен другими органическими материалами: деревом, углем, дегтем, смолой.

Аппарат высокого давления "белт" компания "Дженерал электрик" впоследствии заменила конструкцией тетраэдрического типа, разработанной Холлом примерно в то же время. Главное преимущество ее заключалось в применении относительно дешевых прессов. В первом варианте использовались четыре независимо работавших пресса, смонтированные в симметричной раме и сходящиеся в центральной части рабочего объема. Для другой, более простой модификации, требуется только один гидравлический пресс, а усилия в трех других направлениях возникают за счет взаимодействия поршней с конической поверхностью прочной стальной поддержки. В тетраэдрическое пространство, образуемое внутренними поверхностями этих вставок, монтируется специально изготовленная деталь из пирофиллита с электропечью, представляющей собой графитовую трубку. Электрический ток подводится через два противоположных поршня или через специальные электровводы. В печь помещаются графит и металл-растворитель.

Параллельно с работами "Дженерал электрик" исследования по получению искусственных алмазов велись Всеобщей шведской электрической акционерной компанией, известной как ASEA. Вероятно, группа ASEA не опубликовала детали своего успешного синтеза алмазов в 1953 г. потому, что пыталась получить ювелирный материал и не придавала большого значения очень мелким техническим алмазам. В технологии ASEA применялись давление от 80 000 до 90 000 атм и температура до 2760 o С. Размеры алмазов, получаемых в обоими фирмами, были существенно меньше 1 мм. В опытах ASEA образовывалось 20-50 кристаллов размером 0,1-0,5 мм.

В СССР способ получения синтетических алмазов был разработан в 1960 г. Институтом физики высоких давлений АН СССР. Руководил работами акад. Л.Ф. Верещагин. В 1961 г. в Институте сверхтвердых материалов АН УССР была отработана промышленная технология синтеза алмазов. Процесс осуществляется при температуре 1800-2500 o С и давлении более 50-102 МПа в присутствии катализаторов - хрома, никеля, железа, марганца, платины, кобальта или других металлов. Впоследствии было установлено, что алмазы образуются при кристаллизации углерода из его раствора в расплаве металла-катализатора.

Синтез алмаза проводится в камере типа "чечевица" объемом несколько кубических сантиметров. Нагревание осуществляется индукционным методом или прямым пропусканием электрического тока. При сближении пуансонов реакционная смесь графита с никелем (а также со слоистым пирофиллитом) сжимается. В результате происходит перекристаллизация гексагональной кристаллической решетки графита в кубическую структуру алмаза. Размер кристаллов алмаза зависит от времени синтеза: при времени реакции 3 мин. образуются кристаллы массой около 10 мг, а 30 мин - 70 мг. Наиболее прочные кристаллы получались размером до 0,5-0,8 мм.

Производство ювелирных синтетических алмазов

Приводим схему аппарата, применявшегося для выращивания крупных кристаллов алмаза с использованием переноса углерода в растворе металла.

Не следует думать, что производство синтетических технических алмазов в огромных объемах упрощает задачу получения алмазов таких размеров и такого качества, которые позволяют отнести их к драгоценным камням. Главное препятствие попыткам получить крупные кристаллы - маленький объем, в котором можно поддерживать экстремальные условия давления и температуры. К тому же для выращивания больших кристаллов требуется длительное время.

Способы получения ювелирных алмазов не патентовались до 1967 г., когда Роберт Уэнторф наконец добился успеха в выращивании алмаза на затравке. Затравочный кристалл необходим для предотвращения кристаллизации графита даже тогда, когда условия опыта соответствуют области кристаллизации алмаза. Наиболее трудная проблема при выращивании крупных кристаллов алмаза высокого качества заключается в необходимости поддержания необходимых условий в области его стабильности.

В используемой Уэнторфом методике затравочный кристалл помещался в холодную часть раствора при температуре около 1420 o С, а мелкие кристаллы располагали в нижней части при температуре 1450 o С. Интервал давлений составлял от 55 000 до 60 000 атм. Лучше, если затравочный кристалл помещают в нижней части, потому что некоторые образующиеся вне затравки мелкие кристаллы всплывают в горячую зону и там растворяются, а не растут вокруг затравки.

В некоторых опытах Уэнторфа питающий алмазный материал перекристаллизовывался в графит. Однако исследователи столкнулись и с более серьезной проблемой: максимальная скорость, с которой кристаллы могут стабильно расти, должна уменьшаться по мере того, как кристалл становится крупнее. Установлено, что для кристалла диаметром 1 мм наиболее высокая скорость стабильного роста составляет 0,2 мм/час. Когда размер кристалла достигает 5 мм, стабильный рост может происходить со скоростью 0,04 мм/час и для выращивания кристалла такого размера требуется несколько дней.

Проблема станет еще более серьезной, если пытаться выращивать синтетические алмазы большего размера. В настоящее время крупный синтетический алмаз имеет 6 мм в диаметре и весит 1 карат (0,2 г). Поскольку для выращивания крупных кристаллов более благоприятны низкие скорости роста, а поддержание высоких температур и давлений в течение длительного времени требует значительных затрат, крупные синтетические алмазы оказываются дороже или сопоставимы с ценой природных кристаллов аналогичных размеров. На фото вверху представлены синтетические алмазы массой 1 карат, выращенные Робертом Уэнторфом, и графит, использованный как исходное вещество.

Окрашивание алмазов осуществляется введением в кристаллы различных элементов-примесей. Азот придает зеленую окраску и, вероятно, обусловливает желтый цвет камней, если он присутствует в малых концентрациях. Введение бора придает алмазу синие цвета. Редко встречающиеся синие природные камни, в частности знаменитый алмаз "Хоуп", также обязаны своей окраской присутствию этого элемента. Изучение свойств окрашенных алмазов полезно для понимания некоторых алмазов и способов образования их в природе.

Прямое превращение графита в алмаз

Для прямого перехода графита в алмаз необходимы еще более экстремальные условия по сравнению с методикой, использующей металл-растворитель. Это связано с большой устойчивостью графита, обусловленной очень прочными связями его атомов. Результаты первых эекспериментов по прямому превращению графит-алмаз, выполненных П. Де-Карли и Дж. Джеймисоном из "Аллайд кемикл Корпорэйшн", были опубликованы в 1961 г.

Для создания давления использовалось взрывчатое вещество большой мощности, с помощью которого в течение примерно миллионной доли секунды (одной микросекунды) поддерживалась температура около 1200 o С и давление порядка 300 000 атм. В этих условиях в образце графита после опыта обнаруживалось некоторое количество алмаза в виде очень мелких частичек. Полученные кристаллиты по размерам (100 А = 10 нм, или одна стотысячная доля миллиметра). Они сопоставимы с так называемым "карбонадо", встречающимся в метеоритах, образование которых объясняется воздействием высокой температуры, возникающей при прохождении метеорита через плотные слои атмосферы, и мощной ударной энергии, возникающей при ударе метеорита о земную поверхность.

В 1963 г. Фрэнсису Банди из "Дженерал электрик" удалось осуществить прямое превращение графита в алмаз при статическом давлении, превышающем 130 000 атм. Такие давления были получены на модифицированной установке "белт" с большей внешней поверхностью поршней и меньшим рабочим объемом. Для создания таких давлений потребовалось увеличение прочности силовых деталей установки. Эксперименты включали искровой нагрев бруска графита до температур выше 2000 o С. Нагревание осуществлялось импульсами электрического тока, а температура, необходимая для образования алмаза, сохранялась в течение нескольких миллисекунд (тысячных долей секунды), что существенно дольше, чем в экспериментах Де-Карли и Джеймисона. Размеры новообразованных частиц были в 2-5 раз больше по сравнению с получающимися при ударном сжатии.

В СССР в Институте сверхтвердых материалов АН УССР была отработана подобная технология получения искусственных алмазов. При направленном взрыве происходит мгновенное повышение давления до 200-102 МПа и температуры до 2000 o С и в графите образуются мелкие (до 10-30 мкм) синтетические алмазы.

В 1963 г. В. Ж. Эверсолом (США) был запатентован способ выращивания алмазов из перенасыщенной углеродом газовой фазы (метана, ацетилена или других углеводородов) при давлении ниже 10-102 МПа. Образующаяся избыточная поверхностная энергия на границе графит-воздух способствует формированию зародышей алмазов. Подобный метод независимо был разработан в СССР Б. В. Дерягиным и Д. В. Федосеевым. При давлении ниже атмосферного им удалось получить на затравках из алмаза нитевидные кристаллы синтетического алмаза из газовой фазы. Скорость роста кристаллов очень низкая - около 0,1 мкм/ч.

Внимание этих ученых привлекли предложения по получению алмазов в условиях, при которых стабилен графит, а алмаз метастабилен (метастабильность алмаза означает, что он может в данных условиях оставаться неизменным неограниченное время без обратного перехода в графит). Для превращения графита в алмаз необходимо, чтобы атомы углерода были возбуждены до состояния, характеризующегося высокой энергией. Обычно это достигается приложением высоких давлений и температур. Альтернативная идея основана на том, что если удастся получить атомы углерода с высоким энергетическим уровнем, то при переходе в твердое состояние вероятнее образование метастабильного алмаза, чем стабильного графита. Этому способствует применение затравочных кристаллов алмаза, которые помогают атомам углерода располагаться в порядке, соответствующем алмазной, а не графитовой структуре. Вероятно, наиболее перспективный метод связан с разложением углеродсодержащих газов при достаточно низких давлениях. Обволакивая мелкие кристаллы алмаза, газ разлагается, и атомы углерода осаждаются на поверхность затравочных кристаллов.

Для опытов Эверсола характерны следующие условия: температура в интервале 600-1600 o С, общее давление газа - одна атмосфера, концентрация метана в газовой смеси от 0,015 до 7%. Затравки имели размер всего лишь 0,1 мкм (десятитысячная доля миллиметра) в диаметре, что обеспечивало большую поверхность для осаждения алмазов. Помимо алмаза в газовой фазе образовывались скопления графита, которые осаждались вместе с алмазом на поверхности затравочных кристаллов. Если время от времени не останавливать процесс для удаления графита, его концентрация настолько возрастает, что препятствует дальнейшему осаждению алмаза. Для этого предусматривалось периодическое извлечение алмазов, которые помещались в сосуд высокого давления (от 50 до 200 атм) с водородом и прокаливались при температуре 1000 o С. Водород вступает в реакцию с графитом намного быстрее, чем с алмазом, поэтому такая процедура очищает поверхность затравочных кристаллов для последующего роста алмазов.

Группа Дерягина пришла к выводу, что новообразования графита выгоднее окислять кислородом воздуха при атмосферном давлении. Преимущество этого способа в том, что процесс синтеза и удаление графита осуществляются в одном и том же реакторе, который в окислительную стадию процесса заполняется воздухом. Типичные условия, используемые для выращивания алмаза этим методом, характеризуются температурой 1020 o С и давлением метана 0,07 мм рт. ст.

Наибольшие скорости роста составляют примерно 0,1 мкм в час, что обеспечивает образование во всем объеме реактора около одного карата алмаза в час. Вибрация затравок способствует увеличению поверхности соприкосновения кристаллов с метаном и ведет к улучшению свойств наращиваемого слоя. Еще большие скорости достигаются при облучении поверхности алмазов светом газонаполненной ксеноновой лампы высокого напряжения. Лампа работает в пульсирующем режиме, способствуя быстрому росту алмаза и в значительной степени предотвращая зарождения кристаллитов графита. Сообщалось, что в таких условиях скорости роста достигают нескольких микрометров в час. Иногда при использовании этого метода начинают расти алмазные "усы" - тонкие нити, выступающие из разных мест поверхности затравочного кристалла. Причины такой странной формы роста пока не ясны.

Метод Эверсола в США развивался в основном Дж. Ангусом и его сотрудниками в университете штата Огайо. Используемые ими условия роста: температура 1000 o С, давление метана (в смеси с водородом) 0,2 мм рт. ст. - близки к условиям экспериментов, проводимых группой Дерягина. Прирост веса составляет обычно 6% за 20 ч, что соответствует линейной скорости роста только 0,001 мкм/сут. Более высокие скорости наблюдаются в начальный период процесса, что, вероятно, связано с напряжениями, обусловленными небольшими различиями расстояний между атомами углерода в пленке и кристалле-подложке. Возможно, что очень высокие скорости роста, о которых сообщалось советскими учеными, также характерны только для начальной стадии процесса.

Фирмой "Дженерал Электрик" в 1970 г. был разработан метод получения крупных синтетических кристаллов алмазов ювелирного качества на затравках в виде пластин. Однако стоимость выращивания таких алмазов гораздо выше, чем добыча природных.

Синтетические алмазы широко применяются для производства алмазно-абразивного инструмента, брусков, шлифовальных и отрезных кругов, паст для шлифования, стеклорезов, резцов, буровых коронок, долот и т. д. В настоящее время более 80% потребности в технических алмазах покрывается за счет синтетических. В настоящее время десятки лабораторий в различных странах продолжают поиски более рациональной и эффективной методики выращивания алмазов для технических нужд и ювелирных целей.

Облагораживание алмазов облучением

Рассказ о синтетическом алмазе был бы неполным без информации об использовании ядерного облучения для получения окрашенных кристаллов. Развитие такого метода обработки вызвано чрезвычайной редкостью цветных алмазов, а между тем окрашенный алмаз хорошего качества более чем на 25% дороже своей бесцветной разновидности.

Английский ученый сэр Уильям Крукс обнаружил, что радиоактивное излучение радия превращает бесцветный алмаз в зеленую разновидность. Позднее было установлено, что это изменение окраски происходит в результате бомбардировки кристалла альфа-частицами, но захватывает только внешний слой алмаза из-за слабой проникающей способности альфа-частиц в твердое тело. Метод обработки алмаза облучением пребывал в забвении до нового витка развития в конце 40-х годов XX века ядерной физики.

Дейтронами бомбардировали кристаллы алмаза. Алмаз оставался сильно радиоактивным в течение нескольких часов, но и в этом случае окрашивался только внешний слой. Было установлено, что бомбардировка электронами с высокой энергией приводит к окрашиванию алмаза в бледно-голубой или зеленый цвет, но опять-таки окрашивался лишь тонкий слой. А вот нейтроны, обладающие более высокой проникающей способностью, могут изменить окраску всего камня. После облучения ими алмазы становятся зелеными, однако нагревание в инертном газе при 900 o С меняет их цвет сначала на коричневый, а затем на золотисто-желтый. Облученные алмазы золотисто-желтого цвета намного привлекательней, чем зеленые или коричневые, они очень популярны в Соединенных Штатах.

В некоторых случаях реакция алмазов на облучение более разнообразна, и можно получить кристаллы синего, красного и пурпурного цветов. Это различие в окраске обусловлено примесями, присутствующими в алмазах. Большинство алмазов, так называемые алмазы типа I, содержат в качестве примеси азот, который внедряется в кристалл предположительно в промежуточную стадию между образованием алмаза в недрах Земли и временем, когда он попадает в приповерхностные ее участки. В большинстве алмазов азот распределен в виде тончайших пластин, но в одном из тысячи он распределен равномерно во всем объеме кристалла. Последний тип кристаллов назван Iб, тогда как наиболее распространенные отнесены к типу Iа.

Менее распространенный тип II объединяет чистые алмазы, почти не содержащие азота. К нему относятся наиболее крупные камни. Наиболее часто встречающиеся алмазы этого типа классифицируются как тип IIа, а очень редкие содержащие небольшие концентрации примесного алюминия, как тип IIб. Среди алмазов типов I6 и II6 встречаются кристаллы красного и фиолетового цветов, вследствие чего они дороже алмазов обычного типа.

В таблице ниже приведены сведения о цвете поступающих в продажу облученных алмазов. Вообще имеет смысл облучать только крупные кристаллы, поскольку повышение цены мелких алмазов не оправдывает затрат на их обработку.

Метод Тип Iа Тип Iб Тип IIа Тип IIб
Нейтронное
облучение
Зеленый Зеленый Зеленый Зеленый
Нейтронное
облучение
+ нагревание
Янтарно-
желтый
Янтарно-
желтый
Коричневый Пурпурно-
красный
Облучение
электронами
Зеленый Синий или
зеленовато-
синий
Синий или
зеленовато-
синий
-
Облучение
электронами
+ нагревание
Янтарно-
желтый
Пурпурно-
красный
Коричневый -

Поскольку в наше время обработка алмазов для изменения их окраски распространена достаточно широко, возникла новая проблема. Некоторые даже подконтрольно облученные алмазы в течение длительного времени могут оставаться радиоактивными в связи с присутствием примесей долгоживущих радиоактивных изотопов. Насколько эта проблема серьезна - до конца не ясно. Но если некоторая опасность для владельца облученного камня существует, он должен быть осведомлен о результатах контроля на остаточную радиоактивность и об опасном методе облагораживания минерала. В любом случае бесконтрольное облагораживание камней в третьих странах делает эти камни опасными, так как неизвестно, чем именно камень облучали и каковы последствия этого облучения. Покупатель должен иметь выбор осознанно отказаться от потенциально опасной покупки.

26 мая 2015 года Международный геммологический институт (IGI) в Гонконге выдал сертификат на необычный рекордный бриллиант массой 10,02 карата, цвета E и чистоты VS1. Подобные драгоценные камни не такая уже и редкость в ювелирном мире, но уникальность данного случая состояла в том, что камень не был добыт из земных недр, а был огранен из 32-каратного кристалла синтетического алмаза, выращенного российской компанией New Diamond Technology (NDT). «Это далеко не первый наш рекорд, — говорит генеральный директор компании Николай Хихинашвили. — Предыдущий, 5-каратный, продержался всего два месяца».

Роман Колядин, директор по производству, показывает мне небольшой цех в одном из технопарков неподалеку от Сестрорецка. Цех безлюден, лишь полтора десятка гидравлических прессов стоят вдоль стен. Это и есть «месторождение» — внутри прессов, в условиях высоких температур и давлений, микрон за микроном растут абсолютно безупречные алмазы. На пультах управления контроллеров у каждого пресса отражаются текущие параметры, но Роман просит снимать картинку так, чтобы эти данные не попали в кадр: «Общие принципы синтеза алмазов хорошо известны и используются в промышленности уже более полувека. А вот детали режимов синтеза — одно из ноу-хау нашей компании». Я обращаю внимание на прецизионные кондиционеры, поддерживающие микроклимат в цеху с точностью до десятых долей градуса. Неужели в такой точности есть необходимость? «Помните, мы сразу же закрыли за собой дверь, чтобы избежать сквозняка? — объясняет Роман. — Небольшие отклонения в температурном режиме могут серьезно повлиять на качество алмаза, и не в лучшую сторону. А мы всегда стремимся получить идеальное качество».


Процесс выращивания монокристаллов алмаза при высокой температуре (около 1500 °C, с нужным градиентом) и высоком давлении (50−70 тыс. атм.). Гидравлический пресс обжимает специальный контейнер, внутри которого находится металлический расплав (железо, никель, кобальт и др.) и графит. На подложке размещается одна или несколько затравок — небольших кристаллов алмаза. Сквозь камеру протекает электрический ток, разогревающий расплав до нужной температуры. В этих условиях металл служит растворителем и катализатором процесса кристаллизации углерода на затравке в форме алмаза. Процесс выращивания одного крупного или нескольких более мелких кристаллов длится 12−13 суток.

Подсмотрели у природы

История синтетических алмазов начинается с конца XVIII века, когда ученые окончательно поняли, что этот камень по своему составу является углеродом. В конце XIX века были попытки превратить дешевые варианты углерода (уголь или графит) в твердый и блестящий алмаз. Заявления об удачном синтезе делали многие известные ученые, такие как французский химик Анри Муассан или британский физик Уильям Крукс. Позднее, правда, было установлено, что никто из них на самом деле успеха не добился, и первые синтетические алмазы были получены только в 1954 году в лабораториях компании General Electric.


Более дешевый процесс осаждения алмаза из ионизированной углеводородной газовой среды на подложке, разогретой до 600−700°С. Для выращивания монокристаллов с помощью CVD требуется алмазная монокристаллическая подложка, выращенная с помощью HPHT. При осаждении на кремний или поликристаллический алмаз получается поликристаллическая пластина, имеющая ограниченное применение в электронике и оптике. Скорость роста — от 0,1 до 100 мкм/ч. Толщина пластин обычно ограничена 2−3 мм, поэтому вырезанные из нее алмазы можно использовать в качестве ювелирных, но их размер, как правило, не превышает 1 карата.

Процесс, который использовали для синтеза в GE, был «подсмотрен» у природы. Считается, что земные алмазы образуются в мантии, на глубине в сотни километров под поверхностью Земли, при высокой температуре (около 1300°С) и высоком давлении (около 50 000 атм.), а затем выносятся на поверхность магматическими породами, такими как кимберлиты и лампроиты. Разработчики GE обжимали с помощью пресса ячейку, внутри которой находился графит и железо-никелево-кобальтовый расплав, выступавший в качестве растворителя и катализатора. Этот процесс был назван HPHT (High Pressure High Temperature — высокое давление, высокая температура). Именно этот способ позднее стал коммерческим для получения недорогих технических алмазов и алмазных порошков (сейчас их производят миллиардами карат в год), а в 1970-х с его помощью научились изготавливать и ювелирные камни массой до 1 карата, хотя и весьма среднего качества.


Две основные технологии промышленного получения синтетических алмазов — это HPHT и CVD. Существует еще ряд экзотических методик, таких как синтез нанокристаллов алмаза из графита при взрыве или экспериментальный метод получения микронных алмазов из суспензии частиц графита в органических растворителях под воздействием ультразвуковой кавитации.

Обходной путь

С 1960-х годов в мире идет разработка еще одного метода синтеза алмазов — CVD (Chemical Vapor Deposition, осаждение из газовой фазы). В нем алмазы осаждаются на подогреваемую подложку из углеводородного газа, который ионизируется с помощью СВЧ-излучения или разогревается до высокой температуры. Именно на этот метод синтеза в начале 2000-х стали возлагать большие надежды и небольшие стартапы, и крупные компании типа Element Six, входящей в группу De Beers.


До последнего времени метод HPHT оставался сильно недооцененным. «Когда мы несколько лет назад покупали оборудование, нам все в одни голос говорили, что промышленные прессы пригодны разве что для синтеза алмазных порошков», — говорит Николай Хихинашвили. Все ресурсы выделялись на разработку CVD, а технология HPHT считалась нишевой, никто из специалистов не верил, что с ее помощью можно выращивать достаточно крупные кристаллы. Однако, по словам Николая, специалистам компании удалось разработать собственную технологию синтеза, которая буквально произвела в отрасли эффект разорвавшейся бомбы. Несколько лет назад в отчете одной из геммологических лабораторий так и было написано: «Вес данного бриллианта составляет 2,30 карата! Подобная величина бриллианта еще до недавнего времени была гарантом его природного происхождения».


Огранка алмазов для получения сверкающих бриллиантов — процесс долгий и не слишком впечатляющий для непосвященного человека. И выращенные, и натуральные алмазы обрабатываются совершенно одинаковым образом.

Лучшие друзья девушек

«Мы, конечно, не единственные, кто выращивает алмазы крупнее 5−6 карат, — объясняет Николай. — Но все остальные подчиняются принципу «два из трех»: крупные, качественные, коммерчески выгодные. Мы первые, кто научился получать крупные кристаллы алмаза высокого качества по приемлемой стоимости. На 32 прессах мы можем выращивать около 3000 карат в месяц, и это камни очень высокого качества — алмазы цвета D, E, F и чистоты от чистейших IF до SI, в основном типа II. 80% нашей продукции — это ювелирные алмазы массой от 0,5 до 1,5 карата, хотя мы можем вырастить под заказ алмаз любого размера». В качестве доказательства Николай протягивает мне кристалл размером с 10-рублевую монету: «Вот это, например, 28 карат. Если огранить его, получится бриллиант карат в 15».


В начале 2000-х мировой алмазный монополист, компания De Beers, была сильно обеспокоена грядущим выходом на ювелирный рынок синтетических алмазов, опасаясь, что это может подорвать бизнес. Но время показало, что бояться нечего — синтетические алмазы занимают очень малую долю ювелирного рынка. К тому же за это время были разработаны методы исследований, которые позволяют достаточно уверенно идентифицировать выращенные алмазы. Признаками синтеза являются включения металла, в цветных алмазах можно рассмотреть секторы роста, к тому же HPHT, CVD и натуральные природные алмазы в УФ-лучах имеют разный характер люминесценции.


В зависимости от содержания азота алмазы относят к одному из двух основных типов. Алмазы типа I содержат до 0,2% азота, атомы которого расположены в узлах кристаллической решетки группами (Ia) или по одиночке (Ib). Тип I преобладает среди природных алмазов (98%). Как правило, такие камни редко бывают бесцветными. Алмазы типа IIa практически не содержат азота (менее 0,001%), среди природных камней их всего 1,8%. Еще реже (0,2%) встречаются безазотные алмазы с примесью бора (IIb). Атомы бора в узлах кристаллической решетки обуславливают их электропроводность и придают алмазам голубоватый оттенок.

«Как относятся потребители к выращенным алмазам? Хорошо, — говорит Николай, — особенно современная молодежь. Для них важно, что эти алмазы бесконфликтны и созданы людьми с помощью высоких технологий без вмешательства в природу. Ну и цена примерно вдвое ниже. Конечно, в сертификате написано, что камни выращенные, но ведь носят-то кольцо с бриллиантом, а не сертификат! А по физическим и химическим свойствам наши алмазы идентичны природным».


Пока что большую часть прибыли дает изготовление алмазов для ювелирного рынка. Однако, скорее всего, в ближайшие годы возникнет огромный спрос на выращенные алмазы и алмазные пластины для специальной оптики, микроэлектроники и других высокотехнологичных промышленных применений.

От украшений к промышленности

Ювелирные алмазы — это прибыльная часть бизнеса NDT, но завтрашний день принадлежит другому направлению. Технический директор компании NDT Александр Колядин любит говорить: «Если из алмаза уже ничего больше нельзя изготовить, сделай бриллиант». На самом деле наиболее перспективный рынок для крупных высококачественных синтетических алмазов — это промышленность. «Ни один природный алмаз не годится для использования в специальной оптике или электронике, — говорит Александр Колядин. — В них слишком много дефектов. А пластины, вырезанные из наших алмазов, имеют почти идеальную кристаллическую решетку. Некоторые исследовательские организации, которым мы предоставляем наши образцы для изучения, с трудом могут поверить в измеренные параметры — настолько они идеальны. И не просто отдельные образцы — мы можем уверенно обеспечить повторяемость характеристик, что для промышленности жизненно важно. Алмазы — это теплоотводы, это окна для специальной оптики и для синхротронов, и, конечно, силовая микроэлектроника, над созданием которой сейчас работают во всем мире».


«Промышленное направление пока составляет 20% нашего производства, но года через три мы планируем довести его до 50%, тем более что спрос быстро растет. Сейчас мы в основном делаем пластины 4 х 4 и 5 х 5 мм, вырезали по заказу несколько 7 х 7 и 8 х 8 мм и даже 10 х 10 мм, но это пока не массовое производство. Наша следующая цель, — говорит Николай Хихинашвили, — это перейти к изготовлению дюймовых алмазных пластин. Это тот минимум, который очень востребован в массовой электронной и оптической промышленности. Для получения таких пластин нужно вырастить кристалл алмаза массой в сто карат. Это наш план на ближайшее будущее». «На десятилетие?» — уточняю я. Николай с огромным удивлением смотрит на меня: «Десятилетие? Мы собираемся сделать это до конца года».